Identifying directional persistence in intracellular particle motion using Hidden Markov Models.

نویسندگان

  • Magnus Röding
  • Ming Guo
  • David A Weitz
  • Mats Rudemo
  • Aila Särkkä
چکیده

Particle tracking is a widely used and promising technique for elucidating complex dynamics of the living cell. The cytoplasm is an active material, in which the kinetics of intracellular structures are highly heterogeneous. Tracer particles typically undergo a combination of random motion and various types of directed motion caused by the activity of molecular motors and other non-equilibrium processes. Random switching between more and less directional persistence of motion generally occurs. We present a method for identifying states of motion with different directional persistence in individual particle trajectories. Our analysis is based on a multi-scale turning angle model to characterize motion locally, together with a Hidden Markov Model with two states representing different directional persistence. We define one of the states by the motion of particles in a reference data set where some active processes have been inhibited. We illustrate the usefulness of the method by studying transport of vesicles along microtubules and transport of nanospheres activated by myosin. We study the results using mean square displacements, durations, and particle speeds within each state. We conclude that the method provides accurate identification of states of motion with different directional persistence, with very good agreement in terms of mean-squared displacement between the reference data set and one of the states in the two-state model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Introducing Busy Customer Portfolio Using Hidden Markov Model

Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...

متن کامل

Holistic Farsi handwritten word recognition using gradient features

In this paper we address the issue of recognizing Farsi handwritten words. Two types of gradient features are extracted from a sliding vertical stripe which sweeps across a word image. These are directional and intensity gradient features. The feature vector extracted from each stripe is then coded using the Self Organizing Map (SOM). In this method each word is modeled using the discrete Hidde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematical biosciences

دوره 248  شماره 

صفحات  -

تاریخ انتشار 2014